显著性水平究竟是何方神圣?
如果你作为一所重点大学的院长,收到一份令人担忧的报告,显示学生每晚平均睡眠时间小时。学生会主席担心学生的健康,并指出这项研究证明家庭作业必须减少。另一方面,大学校长则认为这项研究是无稽之谈你必须决定这是否是一个严重的问题。幸运的是,你非常精通统计学,并最终看到了一个将你的教育用于实践的机会!
统计显著性是经常听到但可能没有真正理解的术语之一。当有人声称数据证明了他的观点,我们点头并接受它时,其实已经假设统计学家做了复杂的操作,产生了不容置疑的结果。事实上,统计显著性并不是一个需要多年研究才能掌握的复杂现象,而是一个每个人都能够实现而且应该理解的简单概念。与大多数技术概念一样,统计显著性建立在几个简单的概念之上:假设检验、正态分布和p值。本文将简要介绍这些概念(并提供进一步的资源),以解决上述难题。
我们要讨论的第一个问题是假设检验,一种利用数据评估理论的技术。“假设”是指研究者对研究前情境的最初猜想。这个最初的理论被称为备择假设,而相反的理论被称为零假设。
假设检验是统计学的基础之一,用来评估大多数研究的结果。这可以使任何研究,从评估药物有效性的医学试验到评估运动计划的观察性研究。所有的研究都有一个共同点,那就是都关注于比较,无论是在两个群体之间,还是在一个群体和整个人口之间。在医学试验的例子中,可能会比较服用两种不同药物的平均恢复时间,或者在以上睡眠问题中,想比较本校学生和全国所有学生的睡眠。
假设检验的检验部分使我们能够确定哪种假设,零假设或备择假设,能得到证据更好地支持。在许多假设检验中,会使用一个称为 z-检验的方法。但是,在开始测试数据之前,需要讨论两个更重要的想法。
了解统计学显著性的第二个问题是正态分布,也称为高斯或钟形曲线。正态分布是用来表示数据是如何分布的,用均值μ(mu)和标准差σ(sigma)来定义。均值表示数据中心的位置,标准差表示数据的离散程度。
正态分布的应用来自于对数据点标准差的评估。可以根据一个数据点与均值的偏差来确定它的异常程度。
如果某个统计量服从正态分布,则可以用均值和标准差来刻画任何一个点。例如,美国女性的平均身高是65英寸(5英尺5英寸),标准差是4英寸。那么如果遇到一个女性,她身高73英寸,我们可以说她比均值高两个标准差,是女性中最高的2.5%。(2.5%的女性矮于μ-2σ (57英寸),2.5%的女性高于μ+2σ)。
在统计学中,通常使用z值取代n个标准差的说法来进行评估,z值表示一个点与均值的偏差的标准差数量。转换为z值的方法是从数据点减去分布的平均值,然后除以标准差。在上面的身高例子中,该女性的z值为2。如果我们对所有的数据点都进行同样操作,新的分布被称为标准正态分布,平均值为0,标准差为1,
每次进行假设检验时,需要假设统计数据的分布,在例子中是本校学生的平均睡眠时间。对于z检验,用正态分布作为检验统计量分布的近似。一般来说,根据中心极限定理,从数据分布中得到更多的均值,则均值趋向于正态分布。但是,这仍然是估计值,因为现实世界的数据并不完全服从正态分布。假设正态分布可以确定研究中观察到的结果有多大意义。z值越高或越低,那么结果越不可能是偶然发生的,也越有可能是有意义的。为了量化结果的意义,通常会使用了另一个概念。
最后一个核心概念是p值。p值是当零假设为真时,观察到至少与测量结果一样极端的结果的概率。
假设正在测量美国佛罗里达州和华盛顿州的平均智商。零假设为,华盛顿州的平均智商不高于佛罗里达州的平均智商。通过研究,发现华盛顿的智商高出2.2个百分点,p值为0.346。这意味着,在零假设(华盛顿的平均智商并不高于佛罗里达的平均智商)为真的世界里,测量华盛顿智商至少高出2.2个百分点的可能性为34.6%。因此,如果华盛顿的智商实际上并没有更高,但由于随机噪声,仍然有1/3的概率测量出华盛顿智商至少高出2.2个百分点。p 值越低,结果越有意义,因为它不太可能是由噪声引起的。
结果是否具有统计学显著性,取决于在开始实验之前建立的显著性p值(称为alpha)。如果观察到的p值小于α,则结果具有统计学意义。需要在研究之前选择α,因为如果在研究之后,人们可以选择一个数字来证明结果是有意义的,不管数据显示什么!
α的选择取决于情况和研究领域,但最常用的值是0.05,相当于结果是随机发生的概率为5%。在平时的统计学中,常用的值为0.1到0.001之间。作为一个极端的例子,发现希格斯玻色子粒子的物理学家使用了0.0000003的α值,或者说只有350万分之一的概率是由于噪声而发现的该粒子。
为了从正态分布的z值得到p值,可以使用表格或者像R这样的统计软件。结果将显示出z值低于计算值的概率。例如,对于z值为2的情况,p值为0.977,这意味着只有2.3%的概率会随机观察到z值高于2的情况。
在本校对202名学生的调查中,平均每晚睡眠时间为6.90小时,标准差为0.84小时
首先,需要将测量值转换成z值。从测量值中减去总体均值(全国平均值),再除以样本数的平方根除以标准差。(随着样本数目的增加,标准差及其变化会减少,因此用样本数量的平方根除以标准差来解释这个现象。
基于0.02116的p值,可以拒绝零假设。(统计学家倾向于拒绝零而不是接受备择假设)。有统计学上显著的证据表明,本校学生比美国大学生的平均睡眠时间少,显著水平为0.05。P值显示我们的结果有2.12%的可能是由于随机噪声。
在学校禁止所有家庭作业之前,需要注意不要给这个结果过多的关注。如果使用α=0.01,那么p值0.02116就不再重要了。如果有人想在研究中证明相反的观点,简单地操纵α值就可以达到。每当检验一项研究时,除了结论之外,还应该考虑p值和样本量。由于样本数量相对较小,只有202个,研究可能具有统计学意义,但这并不意味着它具有实际意义。此外,这是一个观察性研究,这意味着只有相关性的证据,而不是因果关系。研究表明,本校学生和平均睡眠时间的减少之间存在相关性,但这并不意味着去该学校会导致睡眠时间的减少。可能还有其他因素影响睡眠,只有随机对照研究能够证明其中的因果关系。
与大多数技术概念一样,统计显著性并不复杂,只是许多小概念的组合。大多数的麻烦来自于学习词汇!一旦把这些碎片放在一起,就可以开始应用这些统计概念了。当学习了统计学的基础知识,就能更好地以一种健康的怀疑态度来看待研究和新闻,可以看到数据实际上说了什么,而不是别人告诉你它的意思。
经管世界成立专门团队独家收集整理学术会议、征文等信息,并在公众号第一时间推送,更多相关整理后的资讯请在公众号回复关键字征文获取。返回搜狐,查看更多